Multiple Endpoints

Weiying Yuan, PhD
Site Head of Biostatistics and Programming, China
Janssen Research and Development
Johnson & Johnson

Outline
- Multiple measurements to characterize disease
- Multiple primary endpoints
- Multiple secondary endpoints
- Repeated measurements
- Composite endpoints and their components
- Methods to control false positive (Type I) error rate
- Criteria to establish efficacy based on multiple endpoints

Multiple Primary Endpoints
- **Definition:** A set of clinical endpoints based on which clinical benefits are assessed.
 - Providing characterization of various aspects of a disease
 - Being used to describe clinical benefits

Examples of Multiple Primary Endpoints & Clinical Decision Rules
1. Primary endpoints - Alzheimer trial
 - Alzheimer Disease Assessment Scale – 11 Cognitive Subscale (ADAS-Cog/11)
 - Clinician Interview Based Impression of Change + Caregiver’s Input (CIBIC-plus)
 - Clinical decision rules:
 - Primary endpoints: Win on both ADAS-Cog/11 and CIBIC-plus

Examples of Multiple Primary Endpoints & Clinical Decision Rules (cont’d)
2. Primary endpoints - Epilepsy trial
 - % reduction in seizure rate
 - % reduction in drop attack rate
 - Parental global evaluation of seizure severity
 - Clinical decision rules:
 - Primary endpoints: Win on seizure rate or win on (drop attack rate and seizure severity)

Examples of Multiple Primary Endpoints & Clinical Decision Rules (cont’d)
3. Primary endpoints - Acne trial
 - Clinical global evaluation
 - Inflammatory lesion counts
 - Non-inflammatory lesion counts
 - Total lesion counts
 - Clinical decision rules:
 - Primary endpoints: Win on Clinical global and (at least 2 out of the 3 lesion counts endpoints)
Multiple Secondary Endpoints

- **Definition:** a set of clinical endpoints intended for possible inclusion in the label after efficacy has been demonstrated
 - Multiplicity adjustment needed to avoid findings by chance
 - Generally not intended for making primary efficacy claim but for labeling perspective

Examples of Multiple Primary & Secondary Endpoints & Clinical Decision Rules

4. Primary endpoints - congestive heart failure (CHF) trial
 - All cause mortality
 - Stroke
 - Myocardial infarction
 - Clinical decision rules:
 - Primary endpoint: All cause mortality
 - Secondary endpoints: stroke, MI

Examples of Multiple Primary Endpoints & Clinical Decision Rules (cont’d)

5. Primary endpoints - Alzheimer trial
 - Alzheimer Disease Assessment Scale – 11 Cognitive Subscale (ADAS-Cog/11)
 - Clinician Interview Based Impression of Change + Caregiver Input (CIBIC-plus)
 - Clinical decision rules:
 - Primary endpoint: Win on both ADAS-Cog 11 and CIBIC-plus
 - Secondary: Win on Neuropsychiatric Inventory (NPI), Activities of Daily living (ADCS-ADL Inventory)

Statistical Issues

- Design issues
 - Win on specific or win on any co-primary endpoints
 - Endpoints correlated vs. independent
 - Impact on Type I & II error rates
- Analysis issues
 - Methods to account for (adjust) multiplicity
 - Interpretation of results
- Controlling the chances of false positive conclusions; multiplicity strategy need to be pre-specified in the protocol

Clinical Decision Rule & Statistical Testing Procedure

Example 1: trial with 3 co-primary endpoints
- **Win on all:** show significance on all 3 co-primary endpoints
- **Win on specific:** a step-down hierarchical closed testing procedure (pre-ordered 3 endpoints);
- **Win on any:** show significance on any 1 of the 3 endpoints. No order.

Clinical Decision Rule & Statistical Testing Procedure – Single Inference (cont’d)

Example 1: trial with 3 co-primary endpoints (cont’d)
- **Win on all:** show significance on all 3 co-primary endpoints
 - Strong control of Type I error rate: all tested at \(\alpha = 0.05 \)
 - 1-sided \(\alpha = 0.025 \)
 - Adjustment of Type II error rate. Most conservative assumption: independence between endpoints
 - \(H_0: \) no effect on both endpoints; \(H_1: \) both are significant. A single inference

Preplanned and described in protocol the pre-specified clinical decision rules and statistical testing procedure
Clinical Decision Rule & Statistical Testing
Procedure (cont’d)

Impact on statistical Power (1 – β)

Power comparison for K=2 endpoints
- Single endpoint power
- Win on both
- versus win on at least one (1-sided test at 0.025)

Power comparison: win in each endpoint at \(\alpha = 0.025 \)
(1-sided test)
- Show decrease in power when K increases,
 - Smaller decrease in power for higher correlation

O’Neill 2004

Clinical Decision Rule & Statistical Testing
Procedure - Multiple Inference (cont’d)

Example 1: trial with 3 co-primary endpoints (cont’d)
- Win on specific: Pre-specify the rank of endpoints in hierarchical order in protocol, step-down closed testing procedures on each endpoint
 - Regardless of final p-values
 - Strong control of Type I error rate

Preplanned and described in protocol the pre-specified clinical decision rules and statistical testing procedure

Clinical Decision Rule & Statistical Testing
Procedure - Multiple Inference (cont’d)

Example 1: trial with 3 co-primary endpoints (cont’d)
- Win on any: show significance on any 1 of the 3
 - Weak control of Type I error rate
 - Statistical testing procedures: eg. Holms, Hochberg, etc.

Clinical Decision Rule & Statistical Testing
Procedure - Multiple Inference (cont’d)

Example 2: Alzheimer trial
- Two co-primary endpoints:
 - ADAS-cog/11 & CIBIC-plus
- Need to win both, ie, show significance on both
 - Each will be tested at \(\alpha = 0.05 \) (1-sided \(\alpha = 0.025 \)) since not increasing chance
- Statistical power: 1 - β for each at 90%
- Statistical power for the trial: 0.9 \times 0.9 = 81% (assuming two endpoints are independent). If want to maintain 90% power for the trial, each planned at 95% power.

Chi, 2003
Composite Endpoints

Definition: An endpoint that is defined based on the responses measured by two or more co-primary clinical endpoints.

- A composite endpoint can be rating scales that yield a total score (e.g., Total PANSS score, the total positive and negative syndrome scales for schizophrenia trials) or index.

Rationale for using composite endpoints:
- Disease needs multidimensional characterization based on multiple measurements.
- Low event rates on individual component primary endpoints.
- Increased power by having more events.
- Mortality or ultimate endpoint needs to be accounted for.
- Not certain which component will win.
- Without inflated Type I & II error rates.

Example 1:
- Alzheimer's disease trial: definition of response to treatment (no change or improved) if:
 1. Change in ADAS-cog11 from baseline ≤0, or
 2. CIBIC-plus ≤4.

Example 3:
- Organ transplant: definition of “failure” if 6 months after:
 1. acute rejection, or
 2. graft loss, or
 3. death.

Example 4:
- Rheumatoid Arthritis trial:
 - Primary endpoints:
 - tender joint count
 - swollen joint count
 - patient pain assessment
 - patient global assessment
 - physician global assessment
 - patient self-addressed disability
 - acute-phase reactant (ESR or CRP).
Composite Endpoints (cont'd)

Example 4: Rheumatoid Arthritis trial (cont'd)

- **Rheumatoid Arthritis (ACR20), a patient is a responder if shows at least a**
 - 20% improvement in tender joint count, and
 - 20% improvement in swollen joint count, and
 - at least a 20% improvement in 3 out of 5 following endpoints:
 - patient pain assessment
 - patient global assessment
 - physician global assessment
 - patient self-addressed disability
 - acute-phase reactant (ESR or CRP)

Composite Endpoints (cont'd)

The LIFE Study

- Losartan (COZAAR) vs. Atenolol in 9193 hypertensive patients
- There were 3 primary endpoints:
 - Cardiovascular death, stroke, myocardial infarction
- Composite endpoint = the time to the first occurrence of any {CV death, stroke, MI}

Composite Endpoints (cont'd)

The LIFE Study (cont'd)

- Trial outcomes
 - Primary composite endpoint (508 (11%) vs. 588 (13%), \(p = 0.021 \))
 - Individual components of primary,
 - Stroke (232 (5%) vs. 309 (7%), \(p = 0.001 \))
 - MI (198 (4%) vs. 188 (4%), \(p = 0.491 \))
 - CV death (204 (4%) vs. 234 (5%), \(p = 0.206 \))

Composite Endpoints (cont'd)

- Issue of composite endpoints
 - Positive result is not component specific
 - Difficult in claim based on composite endpoint
 - Difficult in determine if and how a component contribute to the composite
 - Single inference of the composite endpoint
 - Careful about interpretation of results.

Clinical Decision Rule & Statistical Testing Procedure - Multiple Inference

- Single testing problem in which Type I error is uniquely defined as the probability that \(p \)-value is \(\leq \alpha \) given that the null hypothesis of no between treatment group difference is true.
- Multiple testing problem in which no unique definition for Type I error rate. Needs to be pre-specified and properly controlled for Type I error rate
- Cannot test each endpoint at \(\alpha = 0.05 \).
Clinical Decision Rule & Statistical Testing Procedure - Multiple Inference (cont’d)

<table>
<thead>
<tr>
<th>Number of independent endpoints</th>
<th>Probability of making at least one erroneous inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>2</td>
<td>0.098</td>
</tr>
<tr>
<td>3</td>
<td>0.143</td>
</tr>
<tr>
<td>4</td>
<td>0.185</td>
</tr>
<tr>
<td>5</td>
<td>0.226</td>
</tr>
<tr>
<td>10</td>
<td>0.401</td>
</tr>
</tbody>
</table>

Assuming no treatment effect on any of the endpoints

Weak Control of Type I Error Rate for Endpoint Non-specific Inference
- Multiple testing procedure provides only weak control of Type I error rate, if it wins on endpoints not specified in design
 - Does not control all potential sources that may result in erroneous conclusion
 - Does not permit endpoint specific inferences
- Example: Holms, Hochberg, and Simes procedures first orders the p-values obtained from testing individual endpoints. No specification of which endpoint in design

Strong Control of Type I Error Rate for Endpoint Specific Inference
- Multiple testing procedure provides strong control of Type I error rate, if it wins on pre-specified endpoints in design
 - Allow endpoint specific inference
 - Provides information on what specific clinical benefits can be expected of the treatment
- Example: Step-down closed testing procedure with order of the endpoints being tested specified \textit{a priori}.

Conclusions and Recommendations
- Importance of understanding the multiplicity issues in trials with multiple primary, secondary endpoints.
 - Issues associated with inflated Type I error rate
 - Impact on Type II error rate/statistical power and sample size

Conclusions and Recommendations (Cont’d)
- In design of clinical trials.
 - Clearly specify the multiplicity issues due to multiple primary, secondary, and component endpoints, multiple comparisons due to multiple treatment groups
 - Specify clinical decision rules and statistical testing procedures

Conclusions and Recommendations (Cont’d)
- Designs properly specified
 - Primary endpoints (multiple or single) to support the claim/indication in the label
 - Secondary endpoints (step-down after winning the primary endpoint(s) to describe further benefit of the drug in label
 - Adjust for multiplicity to avoid false positive conclusions
References

2. Chi, George Clinical Benefits, Decision Rules, and Multiple Inferences; February 12, 2003, CDER Scientific Roundtable

Thank you!